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Abstract

Data analysis, data mining, predictive analytics, machine learning, data science, and

artificial intelligence have affected how for-profit organizations make decisions for many years

now, many decades for some methods. The nonprofit industry, specifically, nonprofit

fundraising has been trying to catch up. This paper lists various applications of analytics in

nonprofit fundraising as found in the literature. I present the survey in two ways: a)

chronological, by decades and b) by analytical methods. I use the term “analytics” to

capture the various methods used in data mining, predictive analytics, machine learning,

data science, and artificial intelligence. This paper is structured as follows: 1) a brief review

of the analytics methods, 2) review of the literature by decades, 3) review of the literature by

methods, 4) summary of the findings, and 5) predictions on future work.

Keywords: data science, predictive analytics, machine learning, fundraising, literature

survey, nonprofit
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Data Science for Fundraising: A Review of Analytics in Fundraising

Introduction

When computer science is making rapid advances, one may ask “what new knowledge

can be gained by reviewing previous work?” Cataloging previous work offers many benefits:

a) we can notice the gaps to build upon, b) we can sense the future direction of research, and

c) we can learn what has worked and what hasn’t. In this paper, I hope to offer an extensive

survey of analytics applied to nonprofit fundraising. Using this survey, I note patterns and

trends, and present research ideas for future work. The paper has the following structure.

First, a brief history of analytics. Then different analytics methods. Followed by a review of

the literature in applied analytics in fundraising. A summary of this review and future

direction.

Review of Analytics

It is easy to get distracted by the current hype of Artificial Intelligence (AI), but when

looked carefully, we can see the meaningful methods and techniques to make sense of the

available data and information. Statistical analyses involve collecting, analyzing, drawing

conclusions from the available data (Diez, Barr, & Cetinkaya-Rundel, 2012). The field of

statistics isn’t new. As Fienberg (1992) wrote in his review of statistics article, the classic

probability theory was formed in the early 1700s, but the inference methods and statistical

models were formed much later in the 1890s.

Advances in statistical research and computational power led to the first hype cycle of

AI in the 1960s (Liao, Chu, & Hsiao, 2012). Later, data mining became popular as a means

to uncover patterns of significance using modern algorithms. Researchers named it

Knowledge Discovery in Databases (KDD): the complete process of finding useful insights

(Fayyad, Piatetsky-Shapiro, & Smyth, 1996). Machine learning, a computer scientist’s way of

saying pattern detection, surged in the early 2000s and now AI is back to the future. From a
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practitioner’s perspective, the differences among these terms and fields are now insignificant,

but researchers in those fields care about these differences (Mannila, 1996). In the end, as

Fayyad et al. (1996) commented, “The unifying goal [of these methods] is extracting

high-level knowledge from low-level data in the context of large data sets.”

Although the latest developments in natural language processing (NLP), natural

language generation (NLG), computer vision, and deep-learning help us with other tasks

than solely discovering knowledge (Young, Hazarika, Poria, & Cambria, 2018), we will find

that the literature for nonprofit fundraising is focused on KDD. This makes sense because

fundraising goes up when the right people are asked for the right amount. But in the future,

we will see broader applications of data science, helping us automate tasks and increase

productivity.

Methods and Techniques in Analytics

Since the field of analytics is expansive, let’s review and categorize the common

methods and techniques used in the field. I will use these categories while reviewing the

research in nonprofit fundraising.

Descriptive Statistics. Descriptive statistics use standard formulas to calculate

measures that reflect the data. Some of these measures include mean, median, standard

deviation, frequency, proportions, and other exploratory analyses. These measures give us

quick insights into the data. Often, these measures are supported by graphs, such as scatter

plots, histograms, and box plots. Such graphs help us see the correlations and patterns in

the data (NIST/SEMATECH, 2013).

Regression. Linear regression or least square methods estimate predictions by

minimizing the sum of the differences between the actual data points and predicted value.

As long as the parameter estimates can be multiplied to a variable (or its function) and these

product terms can be added to form a function, we can use a linear regression – even if the

function itself isn’t a straight line (NIST/SEMATECH, 2013). But when the parameters



SURVEY OF PREDICTIVE ANALYTICS 5

take a non-linear form, we can’t use linear regression and could use non-linear regression.

When we estimate parameters to build a model for some data, this approach is called

parametric. In contrast, in a non-parametric approach we estimate a function that follows

the data closely (James, Witten, Hastie, & Tibshirani, 2013).

Regression methods can be used both for quantitative prediction (i.e. gift amount) as

well as for predicting class probabilities (i.e. yes or no). Many approaches extend or build

upon regression methods. In this paper, I have categorized them under regression. Some of

these methods include logistic regression, Linear Discriminant Analysis (LDA), Generalized

Additive Models (GAMs), Generalized Linear Models (GLMs), Ridge regression, Tobit

regression, and Probit regression.

Classification. Classification methods predict the dependent variable into the

different values of the dependent variable, such as “Yes” or “No.” These values are called

classes. Although regression methods work on classifications problems, machine learning

“divide-and-conquer” and “covering” techniques such as decision trees and rules are better

equipped to handle missing values and noisy data (Witten, Frank, Hall, & Pal, 2016).

Clustering. Clustering methods attempt to divide the data into n groups of similar

data points. These methods are called unsupervised learning methods as they do not require

a dependent variable. They work by finding center points for each of these groups and then

mark all the data points close to these centers as part of these clusters (James et al., 2013, p.

385).

Ensemble Methods. There are two types of ensemble methods: a) comparison of

many algorithms, and b) using predictions from many algorithms. The comparison of

multiple algorithms helps analysts see which methods work well for their data sets.

Comparison prevents the potential loss of prediction performance compared to the analyst’s

preferred method. Predictions from multiple algorithms can outperform a single algorithm

by using stacking methods or super learners (Polley, Rose, & van der Laan, 2011; Polley &

van der Laan, 2010).
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Polley et al. (2011) argue that super learners work well with real-life datasets because

no single algorithm can accurately model the data, but combining different algorithms

provide us better estimates. As James et al. (2013) note, “there is no free lunch in statistics:

no one method dominates all others over all possible data sets.”

Literature Review

Previous Work

Lindahl and Conley (2002) reviewed research and put it into two categories:

“Motivational Studies” and “Predicting Alumni Giving.” The first category consists of work

that studies why people choose to give. The second category includes research that identifies

and test factors that could predict a person’s choice to give.

More recently, Bekkers and Wiepking (2010) reviewed more than 500 articles and

categorized these works into eight topical areas. While these reviews summarized methods of

philanthropy, this paper focuses on the uses of analytical methods.

Method

I followed the methods and frameworks used in two popular review articles:

“Educational data mining: A survey and a data mining-based analysis of recent works”

(Peña-Ayala, 2014) and “Data mining techniques and applications–A decade review from

2000 to 2011” (Liao et al., 2012). Both papers used comprehensive methods to collect and

review the published works in data mining. Like their approaches, I started with these broad

search terms in Google Scholar:

("data mining" OR analytics OR "machine learning" OR "data science" OR

clustering OR statistics OR predictive) AND

(nonprofit OR fundraising OR fund-raising OR non-profit OR charity OR

donation OR philanthropy)
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I filtered the results from these searches and used Google Scholar’s citations feature to

search for other papers that cited these works. Additionally, I used Publish or Perish

software (Harzing, 2007) to run searches in Scoups and Microsoft Academic search databases

as seen in Figure 1. In the next phase, I looked at other cited works within these results.

Figure 1 . Publish or Perish Search Screen

After reading the results from this search, I decided whether to include the research as

part of this review. The excluded work fell into these categories:

• Unpublished work

• Undergraduate thesis

• News articles

• Company white papers

• Research without analytics

I ended up with 145 works. Table 1 shows how the works were published, and you can

see that Ph.D. dissertations account for the second most publications.

Limitations

This review and its findings are limited because of my omissions and subjective bias. I

omitted any work that I could not find digitally. Although USC library’s catalog is extensive

and web searches can find many publications, I missed the digitally unavailable research
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Table 1

Categories of Published Works

Category Published Works

Article 78

PhD Thesis 51

In Proceedings 5

Book 4

In Collection 3

Masters Thesis 2

Tech Report 2

(fewer than five). My subjective bias towards what qualifies as a study for this review likely

excluded some publications. Also, I may have made errors with the search keywords. Finally,

operator error: it is likely that I unintentionally missed some research.

By Decades

The first publication in this field is probably O’Connor’s dissertation on characteristics

of alumni donors from 1961 (O’Connor, 1961). But you can see from Figure 2 that majority

of the works were published between 2010 and 2019. Another noticeable trend, as seen in

Figure 3, is the use of a wider set of techniques during the 2010-2019 period – though

regression still leads the way.

Table 2 shows the raw numbers of the various analytics methods used over time. You

can see regression methods and descriptive statistics total more than 100 studies, followed by

10 ensemble studies. This suggests that researchers feel confident in the results from

regression methods. Or, researchers from other fields, especially computer science, have not

studied fundraising problems.
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Figure 2 . Total Number of Published Works by Decades

By Method

CHAID. CHAID is a decision tree learner, which Liihe (1998) used to study

database marketing at UNICEF. Denizard-Ramsamy and Medina-Borja (2008) predicted

financial vulnerability in non-profit organizations using CHAID; this is a rare paper as most

of the studies in this review focus on donor identification.

Clustering. Segmentation via clustering has a good use case in fundraising for

customized marketing as well as prospect identification. Various researchers have applied

segmentation at university settings (Blanc & Rucks, 2009; Cermak, File, & Prince, 1994;

Durango-Cohen & Balasubramanian, 2015; E. J. Durango-Cohen et al., 2013a; P. L.

Durango-Cohen et al., 2013b; Luperchio, 2009; Zhang, 2014).

Descriptive Statistics. Descriptive statistics include mean, percentage distribution,

correlations, Chi-squared tests, and Analysis of Variance (ANOVA). Most of the research in

this category studied the effects of alumni characteristics to predict giving (Anderson, 1981;
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Figure 3 . Methods by Decades.

Note: Although regression techniques are oft-used methods, ensemble methods are finding

greater use.

Bingham Jr, Quigley Jr, & Murray, 2003; Blumenfeld & Sartain, 1974; Bruyn & Prokopec,

2013; Caruthers, 1973; Chewning, 1984; Dietz, 1985; Gardner, 1975; Gunsalus, 2005;

Haddad, 1986; Hunter, Jones, & Boger, 1999; Johnson, 2013; Keller, 1982; Korvas, 1984;

Loveday, 2012; Markoff, 1978; McKee, 1975; McKinney, 1978; McNally, 1985; Miller, 2013;

Morris, 1970; Nelson, 1984; Newman, 2011; O’Connor, 1961; Oglesby, 1991; Riecken & Yavas,

1979; Schlegelmilch & Tynan, 1989; Smith & Beik, 1982; Sundel, Zelman, Weaver, &

Pasternak, 1978; Wylie, 2004).

A few notable exceptions were:

• Frederick (1984) studied football success with institutional giving.
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Table 2

Trends of Methods Used by Decade

Analytics Method 1960-1969 1970-1979 1980-1989 1990-1999 2000-2009 2010-2019 Total

CHAID 0 0 0 1 1 0 2

Clustering 0 0 0 1 2 4 7

Descriptive Statistics 1 9 11 3 5 5 34

Ensemble 0 0 0 0 1 9 10

Lifetime Value 0 0 0 2 1 0 3

Machine Learning 0 0 0 0 1 0 1

Markov Chains 0 0 1 1 0 0 2

Neural Networks 0 0 0 1 0 0 1

Other 0 1 0 0 2 2 5

Regression 0 2 7 17 21 30 77

Social Media 0 0 0 0 0 1 1

Support Vector Machines 0 0 0 0 0 1 1

Survival Analysis 0 0 0 0 1 0 1

Total 1 12 19 26 35 52 145

• Berger and Smith (1997) analyzed the effects of framing the direct mail appeals.

• Quigley, Bingham, and Murray (2002) measured the effects of gift acknowledgments on

giving.

• Magson and Routley (2009) looked at planned giving fundraising.

Ensemble. Ensemble methods often include machine learning techniques, which are

either combined to improve performance or used for comparison. Potharst, Kaymak, and

Pijls (2002) used neural networks and CHAID to improve direct marketing outcomes. Chen

(2010) used regression, neural network, and SVMs on the Direct Marketing Education

Foundation (DMEF) data. Ye (2017) used Naive Bayes, Random Forest, and SVM to predict

major donors and compared the results from these methods. Other works in this category

included: E. J. Durango-Cohen (2013), Moon and Azizi (2013), Udenze (2014), Torres

(2014), Chung and Lee (2015), Kakrala and Chakraborty (2015), and Rattanamethawong,
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Sinthupinyo, and Chandrachai (2018).

Lifetime Value. Commonly used in the for-profit/marketing world, lifetime value

calculates the future total profit from a customer. This value is used for segmentation and

acquisition strategies. Some researchers have built models to calculate this value for donors

(Aldrich, 2000; Hunter & Hill, 1998; Sargeant, 1998).

Machine Learning. Many of the studies in the ensemble category fall in the

machine learning category also. There was one study that didn’t fit in the ensemble category:

Weerts and Ronca (2009) used classification trees to predict alumni giving.

Markov Chains. Markov Chains use probabilities of prior events to predict the

probability of next events, and such a chain continues. A donor’s lifetime giving can also be

structured as a chain of events to predict future giving. Soukup (1983) and Toohill, Mullins,

Barclay, and Sadnicki (1997) used Markov chains to predict giving.

Neural Networks. Like the machine learning models that fall under ensemble

methods, a few neural network applications were also part of that category. But a

standalone implementation of neural networks can be found in Goodman and Plouff (1997).

Other. I placed other publications in this category if I couldn’t classify them. These

tend to be either overarching frameworks (Birkholz, 2008; Nandeshwar & Devine, 2018),

descriptive works (Herzlinger, 1977), or rarely applied techniques for fundraising (Hashemi,

Le Blanc, Bahrami, Bahar, & Traywick, 2009).

Regression. Researchers in higher education have applied different flavors of

regression techniques, and as mentioned in the earlier section, I am using the term regression

liberally. Most of these studies are Ph.D. dissertations from education schools and colleges

(Baade & Sundberg, 1996; Baruch & Sang, 2012; Beeler, 1982; Belfield & Beney, 2000;

Bennett, 2003, 2006; Bohannon, 2007; Boyle, 1990; Bruggink & Siddiqui, 1995; Brunette, Vo,

& Watanabe, 2017; Burgess-Getts, 1992; Christian, 2018; Cunningham & Cochi-Ficano,

2002; Day, 2018; Dickert, Sagara, & Slovic, 2010; Diehl, 2007; Duncan, 1999; Duronio &

Loessin, 1990; Faisal, 2017; Gaier, 2005; Greenlee & Trussel, 2000; Grill, 1988; Hanson, 2000;
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Holmes, 2009; House, 1987; Hoyt, 2004; Hueston, 1992; Ketter, 2013; Key, 2001; Lara &

Johnson, 2013; Lawley, 2008; Lawrence, Kudyba, & Lawrence, 2017; Lertputtarak &

Supitchayangkool, 2014; Leslie & Ramey, 1988; Lindahl & Winship, 1992, 1994; Liu, Feng, &

Ouyang, 2018; Lowe, 2019; Manzer, 1974; Marr, Mullin, & Siegfried, 2005; Martin, 1993;

McDearmon & Shirley, 2009; Meer & Rosen, 2008, 2012; Miracle, 1977; Monks, 2003;

Morgan, 2014; Mosser, 1993; Naccarato, 2019; Okunade & Berl, 1997; Okunade, Wunnava, &

Walsh Jr, 1994; Oliveira, Croson, & Eckel, 2011; Park, Ko, Kim, Sagas, & Eddosary, 2016;

Pearson, 1996; Pinion, 2016; Rau, 2014; Rau & Erwin, 2015; Ropp, 2014; Rosenblatt,

Cusson, & McGown, 1986; Saraih et al., 2018; Schlegelmilch, Love, & Diamantopoulos, 1997;

Selig, 1999; Shadoian, 1989; Shen & Tsai, 2009; Skari, 2014; Steinnes, 2011; Sun, Hoffman, &

Grady, 2007; Taylor & Martin, 1995; Terry & Macy, 2007; Thompson, 2010; Tiger & Preston,

2013; Truitt, 2013; Tsao & Coll, 2005; Veludo-de-Oliveira, Alhaidari, Yani-de-Soriano, &

Yousafzai, 2016; Verhaert, 2010; Walcott, 2015; Yavas, Riecken, & Parameswaran, 1981).

Social Media. Vequist IV (2017) studied the use of various social media and giving

to various nonprofit organizations. Campaign performance data and other meta-data were

used to improve the decision making of the stakeholders and increase social media user

donations.

Support Vector Machines. One study using SVM is notable because it dealt with

the imbalanced (or unbalanced) classes that we typically observe in the donation data

i.e. either the proportion of donor records in the data is low or few major donors exist in the

data. Kim, Chae, and Olson (2012) used SVMs to build a response model on imbalanced

datasets.

Survival Analysis. Although survival analysis is used in analyzing data for a

failure event, such as death, Drye, Wetherill, and Pinnock (2001) used it to predict a donor’s

status in her giving lifecycle.
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Quality Assessment

While reviewing the breadth of the methods used for nonprofit fundraising is useful,

more important is assessing the rigor, credibility, and relevancy of the predictions in these

published works. Wen, Li, Lin, Hu, and Huang (2012) used a 10-question framework to

assess the quality of each work. I used a similar method. I answered questions given in Table

3 for each published work; the possible answers were Yes, No, or Somewhat with weights of 1,

0, and 0.5 respectively. All questions, except for Q4 and Q6, are from Wen et al. (2012). Of

course, these questions are suitable only for those works in which the researchers made

predictions or built predictive models. It is also unfair to assess older research when

obtaining enough computing power was a challenge. Also, my subjective bias can skew the

findings.

Table 3

Prediction quality assessment questions

ID Question

Q1 Are the estimation methods well defined and deliberate?

Q2 Is the experiment applied on sufficient data sets?

Q3 Is the estimation accuracy measured and reported?

Q4 Are the estimates significantly better than the baseline?

Q5 Is the proposed estimation method compared with other methods?

Q6 Can the findings be applied widely?

Q7 Are the findings of study clearly stated and supported by reporting results?
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Table 4

Top Published Works by Prediction Quality Assessment

Author Analytics Method

Shadoian (1989) Regression

Liihe (1998) CHAID

Greenlee and Trussel (2000) Regression

Potharst et al. (2002) Ensemble

Chen (2010) Ensemble

Kim et al. (2012) Support Vector Machines

Moon and Azizi (2013) Ensemble

Chung and Lee (2015) Ensemble

Ye (2017) Ensemble

Liu et al. (2018) Regression
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Summary of Literature

Most of the studies in this review focused on either predicting the likelihood of a

person donating or predicting the giving level or amount. An exception was the Greenlee

and Trussel (2000) study of the financial stability of institutions. As Brittingham and

Pezzullo (1990, p. 39) wrote about the predictive studies in fundraising, “Most of the studies

are dissertations, and most are based on a single institution, most often a university. The

results . . . do not support strong conclusions.” What was true in the 1990s remains true

today. As we saw in the earlier sections, dissertations lare the second-most studies in applied

analytics for fundraising.

Many dissertations followed a similar pattern: select variables based on literature,

study each variable for correlations and significance, include selected variables for an

estimation model, reject or accept the null hypothesis, and then present final results.

There are some challenges with this approach.

1. These studies are often limited to one institution; hence the results cannot be

generalized.

2. This type of research primarily becomes about the application of a statistical technique

to the researcher’s dataset and doesn’t contribute to knowledge advancement, either

through the application of newer and different predictive methods or towards a unified

theory of giving.

3. This type of framework can be templatized using a programming language.

While building local predictive models are useful for development offices, we need

either groundbreaking research to significantly improve on the donor classification problem,

or we need to find different fundraising problems to solve.

Many of these studies used the null hypothesis significance testing (NHST) to infer the
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answers to research questions. This is problematic for two reasons:

1. As Trafimow (2014) declared in his editorial of the Basic and Applied Social

Psychology journal, “The null hypothesis significance testing procedure has been

shown to be logically invalid and to provide little information about the actual

likelihood of either the null or experimental hypothesis.” Then next year, while

banning the null hypothesis significance testing procedure from the journal, Trafimow

and Marks (2015) said, “p < .05 bar is too easy to pass and sometimes serves as an

excuse for lower quality research.”

2. As Gliner, Leech, and Morgan (2002) noted, “A common misuse of NHST is the

implication that statistical significance means theoretical or practical significance.” In

these surveyed studies, you can find examples of researchers interpreting statistically

significant results mistaken for important findings.

While most researchers report on the overall accuracy of their prediction models, very

few report on other evaluation measures, such as precision, recall, or specificity. Another

challenge is the lack of comparison to baseline proportions. Since such measures or

comparisons aren’t reported, it is hard to assess whether the new predictive models

performed better than guessing.

For example, say our data had 5% donors and 95% non-donors. We built a predictive

model that classified donors and non-donors. Let’s say that this model had an overall

accuracy of 95%. Now, if were to evaluate the model only based on accuracy, we might be

satisfied with its performance. But even if we guess every row as a non-donor, we achieve

95% accuracy.

Similarly, if the data has 45% donors and 55% non-donors, and the model had an

overall accuracy of 50%, it did worse than the baseline. Even if the predictive models aren’t

compared to other models, they should at least be compared with the baseline. As my
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colleagues and I reported in another paper, if the overall accuracy rate is close to the

baseline, then the complex analysis can be replicated by a simple majority vote model

(Nandeshwar, Menzies, & Nelson, 2011).

One benefit of the research done over decades into the likelihood of a person’s donation

is that we have a comprehensive list of attributes, attitudes, and values that could go into

building new predictive models.

Opportunities and Future Direction

Today’s technological advancement offers fascinating paths to study various problems

in fundraising. Here are some suggestions and ideas to build on our knowledge of

applications of data science in nonprofit fundraising.

• Establish the baseline. In classification or numeric prediction models, use a

majority vote or the mean value to compare the results against. Witten et al. (2016)

call this model is called ZeroR. Also, consider using a simple, single-rule classification

model known as 1R or OneR. Holte (1993) calculated the results from this simple

model on many datasets and compared them with an advanced decision tree model

and found that 1R was only “a few percentage points less accurate.”

• Use and report a wider set of evaluation metrics. As we saw earlier, reporting

accuracy can be misleading. We can consider different evaluation measures shown in

the equations below (Branco, Torgo, & Ribeiro, 2016). For example, Rau (2014, p. 30)

reported that “76.4% of cases are correctly classified,” but you can see in Table 6 that

73% of their study data contained non-donors, so simply predicting everyone a

non-donor, our accuracy is 73%. The study predicted only 88 donors who were actual

donors, making the recall or true positive rate of 20%. Thus, the model failed at

correctly identifying donors. Similarly, the F-measure and balanced accuracy were low

at 0.32 and 59%.
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Table 5

Confusion Matrix for a Two-class Problem

Predicted

Donor Non-donor

Donor True Positive (TP) False Negative (FN)
Actual

Non-donor False Positive (FP) True Negative (TN)

Precision = TP

TP + FP
(1)

Recall = TP

TP + FN
(2)

Specificity = TN

TN + FP
(3)

F − measure = 2 × Precision × Recall

Precision + Recall
(4)

BalancedAccuracy = Recall + Specificity

2 (5)

• Consider selecting variables using feature subset selection (FSS). In his

extensive study of feature subset selectors, Hall (1999) documented compared his

feature (or variable) selector with other predictive techniques. He found that FSS

removed redundant and irrelevant features, and in some cases, even improved the

performance of the underlying predictive algorithms.

• Consider class balancing methods. When the number of rows for one class (such

as non-donor) is higher than the rows for any other class (such as donor), class

imbalance occurs. To overcome this problem, Kim et al. (2012) used undersampling to

reduce the number of majority class rows. Some other approaches to achieve class

balance: oversampling the minority class rows, synthetic generation of minority class
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Table 6

Confusion Matrix from Rau (2014)

Predicted

Donor Non-donor

Donor 88 342
Actual

Non-donor 32 1126

rows, such as SMOTE and family (Chawla, Bowyer, Hall, & Kegelmeyer, 2002; Han,

Wang, & Mao, 2005), and cost-sensitive learning (Domingos, 1999).

• Consider ensemble methods. Either combine various models (that is bagging,

boosting, or stacking methods (see Witten et al., 2016, Section 8.1)) or compare

various models and pre-processors. This type of comparison should be standard. Here’s

pseudocode to explain this comparison:

For each dataset:

Create P pre-processed datasets

For each p in P:

Divide p into ten cross-folds

For each predictive learning technique t:

Train t on 9-folds

Test the model on the remaining folds

Store results and the resulting model

• Build a large database with data from diverse organizations. If researchers

can collect data from many organizations, they can conduct a large-scale study to

build predictive models. For example, Thompson (2010) used data from eight

institutions. Such a large-scale study will show either that accurate donor classification
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is hard, or that a unified, single model can be built and we can research other topics.

A related idea is what JOHNSON (1991) attempted: get anonymized data from the

Internal Revenue Service (IRS) and build models on it.

• Research other topics and approaches:

– Consider modeling methods that work well with long-tail or skewed

data, such as quantile regression (Perlich, Rosset, Lawrence, & Zadrozny, 2007) or

HyperSMURF, an ensemble method (Schubach, Re, Robinson, & Valentini, 2017).

– Study creation of personalized appeals and communication. The latest

Natural Language Processing and Generation (NLP and NLG) methods are far

superior to previous methods (Yang et al., 2019), and they can be used to generate

personalized appeals and communication. Ding and Pan (2016), for example,

generated gain or risk framed text to increase the text’s appeal to the reader.

– Study applications of graph theory to learn interests. Social graphs have

value if all the connections in the graph can be known. A better use case for

fundraising could be interest graphs, which identify the interests of people and

connect people based on these interests (Yu, Chen, Li, & Ma, 2014).

– Use NLG and NLP to automate tasks. Like creating personalized appeals,

we can use pre-trained language models to summarize text, among other things,

as shown by Liu and Lapata (2019). For example, using a simple Python text

summarizer called sumy1, I summarized an article on Bill Gates from

biography.com2.

1 https://github.com/miso-belica/sumy

2 https://www.biography.com/business-figure/bill-gates

https://github.com/miso-belica/sumy
https://www.biography.com/business-figure/bill-gates
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"In 1975, Gates and Allen formed Micro-Soft, a blend of "micro-computer"

and "software" (they dropped the hyphen within a year). Bill Gates Fact

Card Microsoft’s Software for IBM PCs As the computer industry grew,

with companies like Apple, Intel and IBM developing hardware and

components, Gates was continuously on the road touting the merits

of Microsoft software applications. Since stepping down from Microsoft,

Gates devotes much of his time and energy to the work of the Bill &

Melinda Gates Foundation."

Conclusion

In this paper, I reviewed the literature of analytics for nonprofit fundraising. Although

researchers have applied more sophisticated methods over time, regression methods remain

the most-used technique for predicting a donor’s likelihood of giving and her giving amount.

Also, dissertations account for second-most published works. Machine learning and ensemble

techniques are increasingly in use, and we will see more research using these methods in the

future. Researchers will also use natural language processing and generation, along with

deep learning.
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Support Vector Machines
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Survival Analysis
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